How Many Transformations?
How many single transformations are there to map the blue square on to the brown square?
Each of the other squares has been created through one of the transformations, as detailed below.
 The blue square has been rotated by 90 degrees anticlockwise about the turquoise point (1,3) to create the turquoise square.
 The blue square has been reflected in the purple line to create the purple square.
 The blue square has been enlarged by a scale factor of 2 about the green point (0,2) to get the green square.
 The blue square has been translated by the orange vector [0,2] to create the orange square.
By editing each of these transformations, can you place each square over the brown square?
Describe each transformation fully.
red point on the blue square. By looking at which point on the brown square moves, describe fully the transformation.
Notes
 To change the rotation drag the turquoise point that is the centre of rotation and use the slider to change the angle of rotation.
 To change the reflection drag the two purple points to move the purple line of reflection.
 To change the enlargement drag the green point that is the centre of enlargement and use the slider to change the enlargement factor.
 To change the translation drag the two orange points to change the orange vector.
For help with the Autograph Player click here.
If you like the page then tweet the link using the button on the right.

If you have found interactivemaths.com a useful website, then please support it by making a donation using the button opposite.


howmany.agg  
File Size:  24 kb 
File Type:  agg 